Strain-induced damage reduces echo intensity changes in tendon during loading.
نویسندگان
چکیده
Tendon functionality is related to its mechanical properties. Tendon damage leads to a reduction in mechanical strength and altered biomechanical behavior, and therefore leads to compromised ability to carry out normal functions such as joint movement and stabilization. Damage can also accumulate in the tissue and lead to failure. A noninvasive method with which to measure such damage potentially could quantify structural compromise from tendon injury and track improvement over time. In this study, tendon mechanics are measured before and after damage is induced by "overstretch" (strain exceeding the elastic limit of the tissue) using a traditional mechanical test system while ultrasonic echo intensity (average gray scale brightness in a B-mode image) is recorded using clinical ultrasound. The diffuse damage caused by overstretch lowered the stress at a given strain in the tissue and decreased viscoelastic response. Overstretch also lowered echo intensity changes during stress relaxation and cyclic testing. As the input strain during overstretch increased, stress levels and echo intensity changes decreased. Also, viscoelastic parameters and time-dependent echo intensity changes were reduced.
منابع مشابه
Ultrashort echo imaging of cyclically loaded rabbit patellar tendon.
Tendinopathy affects individuals who perform repetitive joint motion. Magnetic resonance imaging (MRI) is frequently used to qualitatively assess tendon health, but quantitative evaluation of inherent MRI properties of loaded tendon has been limited. This study evaluated the effect of cyclic loading on T₂* values of fresh and frozen rabbit patellar tendons using ultra short echo (UTE) MRI. Eigh...
متن کاملTime-dependent ultrasound echo changes occur in tendon during viscoelastic testing.
The viscoelastic behavior of tendons has been extensively studied in vitro. A noninvasive method by which to acquire mechanical data would be highly beneficial, as it could lead to the collection of viscoelastic data in vivo. Our lab has previously presented acoustoelasticity as an alternative ultrasound-based method of measuring tendon stress and strain by reporting a relationship between ultr...
متن کاملUltrasound echo is related to stress and strain in tendon.
The mechanical behavior of tendons has been well studied in vitro. A noninvasive method to acquire mechanical data would be highly beneficial. Elastography has been a promising method of gathering in vivo tissue mechanical behavior, but it has inherent limitations. This study presents acoustoelasticity as an alternative ultrasound-based method of measuring tendon stress and strain by reporting ...
متن کاملHuman Achilles tendon plasticity in response to cyclic strain: effect of rate and duration.
High strain magnitude and low strain frequency are important stimuli for tendon adaptation. Increasing the rate and duration of the applied strain may enhance the adaptive responses. Therefore, our purpose was to investigate the effect of strain rate and duration on Achilles tendon adaptation. The study included two experimental groups (N=14 and N=12) and a control group (N=13). The participant...
متن کاملCyclic loading of tendon fascicles using a novel fatigue loading system increases interleukin-6 expression by tenocytes
Repetitive strain or 'overuse' is thought to be a major factor contributing to the development of tendinopathy. The aims of our study were to develop a novel cyclic loading system, and use it to investigate the effect of defined loading conditions on the mechanical properties and gene expression of isolated tendon fascicles. Tendon fascicles were dissected from bovine-foot extensors and subject...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 45 9 شماره
صفحات -
تاریخ انتشار 2012